Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Nanotechnol ; 17(2): 159-165, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34916655

RESUMO

Biological molecular machines enable chemical transformations, assembly, replication and motility, but most distinctively drive chemical systems out of-equilibrium to sustain life1,2. In such processes, nanometre-sized machines produce molecular energy carriers by driving endergonic equilibrium reactions. However, transforming the work performed by artificial nanomachines3-5 into chemical energy remains highly challenging. Here, we report a light-fuelled small-molecule ratchet capable of driving a coupled chemical equilibrium energetically uphill. By bridging two imine6-9 macrocycles with a molecular motor10,11, the machine forms crossings and consequently adopts several distinct topologies by either a thermal (temporary bond-dissociation) or photochemical (unidirectional rotation) pathway. While the former will relax the machine towards the global energetic minimum, the latter increases the number of crossings in the system above the equilibrium value. Our approach provides a blueprint for coupling continuous mechanical motion performed by a molecular machine with a chemical transformation to reach an out-of-equilibrium state.

3.
Angew Chem Int Ed Engl ; 60(18): 10049-10055, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33561311

RESUMO

The digital revolution sets a milestone in the progressive miniaturization of working devices and in the underlying advent of molecular machines. Foldamers involving mechanically entangled components with modular secondary structures are among the most promising designs for molecular switch-based applications. Characterizing the nature and dynamics of their intramolecular network following the application of a stimulus is the key to their performance. Here, we use non-dissociative electron transfer as a reductive stimulus in the gas phase and probe the consecutive co-conformational transitions of a donor-acceptor oligorotaxane foldamer using electrospray mass spectrometry interfaced with ion mobility and infrared ion spectroscopy. A comparison of collision cross section distributions for analogous closed-shell and radical molecular ions sheds light on their respective formation energetics, while variations in their respective infrared absorption bands evidence changes in intramolecular organization as the foldamer becomes more compact. These differences are compatible with the advent of radical-pairing interactions.

5.
J Am Soc Mass Spectrom ; 31(6): 1167-1171, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32420738

RESUMO

The fragmentation of benzylpyridinium "thermometer" ions is widely used to quantify the energetics of ions studied by mass spectrometry and other hyphenated techniques such as ion mobility. The reaction pathway leads to a benzylium cation with the release of a neutral pyridine. Using trapped ion mobility spectrometry, we noticed that the addition of acetonitrile, present in the electrosprayed solvent mixture, could occur on some electrophilic benzylium cations. This process results in the formation of adducts and in the appearance of a supplementary mobility peak. We here demonstrate that the addition takes place both in the electrospray source and inside the mobility analyzer, thereby evidencing possible outflow of solvent vapors downstream the instrument. By further characterizing the initial kinetics and the resulting equilibrium linked with the addition reaction, we presently discuss these as alternative probes to calibrate ion temperature in the framework of ion mobility.

6.
Anal Chem ; 92(6): 4573-4582, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32083849

RESUMO

Modern ion mobility instrumentation is typically operated above the low field limit, which may activate the ions and cause structural rearrangement or fragmentation during analysis. Here, we quantitatively assessed the internal heating experienced by ions during trapped ion mobility spectrometry (TIMS) experiments. To this end, the fragmentation yields of fragile benzylpyridinium "thermometer" ions were monitored during both the accumulation and analysis steps inside the TIMS tunnel. The corresponding fragmentation rate constants were translated into a vibrational effective temperature Teff,vib. Our results demonstrate significant fragmentation upstream and inside the TIMS tunnel that corresponds to Teff,vib ≈ 510 K during both the accumulation and analysis steps. Broadening our scope to cytochrome c and lysozyme, we showed that although compact "native" folds can be preserved, the collision cross section distributions are highly sensitive to the transmission voltages and the analysis time scale. Our results are discussed with regard to Teff,vib data previously acquired on traveling-wave (TWIMS) ion mobility in the context of native mass spectrometry and conformational landscape exploration.

7.
J Crohns Colitis ; 14(2): 205-215, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31282946

RESUMO

BACKGROUND AND AIMS: Based on genetics and natural history, Crohn's disease can be separated into two entities, an ileal and a colonic disease. Protein-based approaches are needed to elucidate whether such subphenotypes are related to distinct pathophysiological processes. METHODS: The proteome of ulcer edges was compared with that of paired control tissue samples [n = 32 biopsies] by differential proteomics in the ileum and the colon of Crohn's disease patients [n = 16]. The results were analysed using a hypothesis-driven approach [based on the literature] and a hypothesis-free approach [pathway enrichment analyses] to determine common and segment-specific pathophysiological processes associated with ileal and colonic CD ulcer edges. To confirm the involvement of a key pathway highlighted by proteomics, two proteins were also studied by immunochemistry. RESULTS: In the ileum and the colon, 4428 and 5204 proteins, respectively, were identified and quantified. Ileal and colonic ulcer edges differed in having a distinct distribution of proteins associated with epithelial-mesenchymal transition, neutrophil degranulation, and ribosomes. Ileal and colonic ulcer edges were similarly characterized by an increase in the proteins implicated in the endoplasmic reticulum protein-processing pathway and a decrease in mitochondrial proteins. Immunochemistry confirmed the presence of endoplasmic reticulum stress in the mucosa of ileal and colonic ulcer edges. CONCLUSION: This study provides protein-based evidence for partially distinct pathophysiological processes being associated with ileal and colonic ulcer edges in Crohn's disease patients. This could constitute a first step toward the development of gut segment-specific diagnostic markers and therapeutics.


Assuntos
Doenças do Colo/etiologia , Doença de Crohn/complicações , Doenças do Íleo/etiologia , Úlcera/etiologia , Adulto , Idoso , Colo/metabolismo , Colo/fisiopatologia , Doenças do Colo/metabolismo , Doenças do Colo/fisiopatologia , Doença de Crohn/metabolismo , Doença de Crohn/fisiopatologia , Feminino , Humanos , Doenças do Íleo/metabolismo , Doenças do Íleo/fisiopatologia , Íleo/metabolismo , Íleo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Úlcera/metabolismo , Úlcera/fisiopatologia
8.
Anal Chem ; 91(20): 12808-12818, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31490660

RESUMO

The number of studies referring to the structural elucidation of intact biomolecular systems using mass spectrometry techniques has gradually increased in the post-2000s literature topics. As part of native mass spectrometry, this domain capitalizes on the kinetic trapping of physiological folds in view of probing solution-like conformational properties of isolated molecules or complexes after their electrospray transfer to the gas phase. Despite its efficiency for a wide array of analytes, this approach is expected to be pushed to its limits when considering highly dynamic systems or when dealing with nonideal operating conditions. To circumvent these limitations, we challenge the adequacy of an original strategy based on cross-linkers to improve the gas-phase stability of isolated proteins and ensure the preservation of folded conformations when measuring with strong transmission voltages, by spraying from denaturing solvents, or trapping for extended periods of time. Tested on cytochrome c, myoglobin, and ß-lactoglobulin cross-linked using BS3, we validated the process as structurally nonintrusive in solution using far-ultraviolet circular dichroism and unraveled the preservation of folded conformations showing better resilience to denaturation on cross-linked species using ion mobility. The resulting collision cross sections were found in agreement with the native fold, and a preservation of the proteins' secondary and tertiary structures was evidenced using molecular dynamics simulations. Our results provide new insights concerning the fate of electro-sprayed cross-linked conformers in the gas phase, while constituting promising evidence for the validation of this technique as part of future structural mass spectrometry workflows.


Assuntos
Reagentes de Ligações Cruzadas/química , Citocromos c/química , Gases/química , Espectrometria de Mobilidade Iônica/métodos , Lactoglobulinas/química , Mioglobina/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Espectrometria de Mobilidade Iônica/instrumentação , Simulação de Dinâmica Molecular , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray/instrumentação
9.
J Phys Chem A ; 123(37): 8043-8052, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31449411

RESUMO

Recent literature provides increasing samples of structural studies relying on ion mobility coupled to mass spectrometry in view of characterizing gas-phase conformation and energetics properties of biomolecular ions. A typical framework consists in experimentally monitoring the collisional cross sections for various experimental conditions and using them as references to select appropriate candidate structures issued from theoretical modeling. Although it has proved successful for structural assignment, this process is resource costly and lengthy, namely due to intricacies in the selection of appropriate input geometries. In the present work, we propose simplified methodologies dedicated to the systematic screening of ion mobility data acquired on systems built from repetitive subunits and detail their application to challenging artificial molecular switch systems. Capitalizing on coarse-grained design, we first demonstrate how the assimilation of subunits into adequately assembled building-blocks can be used for fast assignments of a system topology. Further focusing on topology-specific differential ion mobility trends, we show that the building-block assemblies can be fused into single fully convex solid figure models, i.e., sphere and cylinder, whose projected areas follow a two-parameter power formalism A × nB. We show that the fitting parameters A and B were assigned as structural descriptors respectively associated with the dimensions of each constitutive subunit, i.e., size parameter, and with their assembled tridimensional arrangement, i.e., shape parameter. The present work provides a ready-to-use method for the screening of IM-MS data sets that is expected to facilitate the eventual design of input structures whenever advanced modeling calculations are required.

10.
J Proteome Res ; 18(6): 2501-2513, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31046285

RESUMO

Over the past 40 years, proteomics, generically defined as the field dedicated to the identification and analysis of proteins, has tremendously gained in popularity and potency through advancements in genome sequencing, separative techniques, mass spectrometry, and bioinformatics algorithms. As a consequence, its scope of application has gradually enlarged and diversified to meet specialized topical biomedical subjects. Although the tryptic bottom-up approach is widely regarded as the gold standard for rapid screening of complex samples, its application for precise and confident mapping of protein modifications is often hindered due to partial sequence coverage, poor redundancy in indicative peptides, and lack of method flexibility. We here show how the synergic and time-limited action of a properly diluted mix of multiple enzymes can be exploited in a versatile yet straightforward protocol to alleviate present-day drawbacks. Merging bottom-up and middle-down ideologies, our results highlight broad assemblies of overlapping peptides that enable refined and reliable characterizations of proteins, including variant identification, and their carried modifications, including post-translational modifications, truncations, and cleavages. Beyond this boost in performance, our methodology also offers efficient de novo sequencing capabilities, in view of which we here present a dedicated custom assembly algorithm.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Peptídeos/genética , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Algoritmos , Sequência de Aminoácidos/genética , Humanos , Peptídeos/química , Processamento de Proteína Pós-Traducional/genética , Análise de Sequência de Proteína/métodos
11.
Methods ; 144: 125-133, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29601857

RESUMO

Ion Mobility (IM) coupled to Mass Spectrometry (MS) has been used for several decades, bringing a fast separation dimension to the MS detection. IM-MS is a convenient tool for structural elucidation. The folding of macromolecules is often assessed with the support of computational chemistry. However, this strategy is strongly dependent on computational initial guesses. Here, we propose the analysis of the Collision Cross-Section (CCS) trends of synthetic homopolymers based on a fitting method which does not rely on computational chemistry a prioris of the three-dimensional structures. The CCS trends were evaluated as a function of the polymer chain length and the charge state. This method is also applicable to mobility trends. It leads to two parameters containing all information available through IM(-MS) measurements. One parameter can be interpreted as an apparent density. The second parameter is related to the shape of the ions and leads us to introduce the concept of trends with constant apparent density. Based on the two fitting parameters, a method for IM trend predictions is elaborated. Experimental deviations from the predictions facilitate detecting structural rearrangements and three-dimensional structure differences of the cationized polymer ions. This leads for instance to an easy identification and prediction of the presence of different polymer topologies in complex polymer mixtures. The classification of predicted trends could as well allow for software-assisted data processing. Finally, we suggest the link between the CCS trends of homopolymers and those obtained from (monodisperse) biomolecules to interpret potential folding differences during IM-MS studies.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Espectrometria de Massas/métodos , Polímeros/química , Modelos Químicos , Modelos Moleculares , Estrutura Molecular
12.
ACS Nano ; 11(10): 10253-10263, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28881131

RESUMO

At the interface between foldamers and mechanically interlocked molecules, oligorotaxanes exhibit a spring-like folded secondary structure with remarkable mechanical and physicochemical properties. Among these properties, the ability of oligorotaxanes to act as molecular switches through controlled modulations of their spatial extension over (un)folding dynamics is of particular interest. The present study aims to assess and further characterize this remarkable feature in the gas phase using mass spectrometry tools. In this context, we focused on the [4]5NPR+12 oligorotaxane molecule complexed with PF6- counterion and probed its co-conformational states as a function of the in-source-generated charge states. Data were interpreted in light of electronic secondary structure computations at the PM6 and DFT levels. Our results highlight two major co-conformational groups associated either with folded compact structures, notably stabilized by intramolecular π-π interactions and predominant for low charge states or with fully stretched structures resulting from significant Coulombic repulsions at high charge states. Between, the oligorotaxane adopts intermediate folded co-conformations, suggesting a stepwise unfolding pathway under increasing repulsive Coulombic constraints. The reversibility of this superstructural transition was next interrogated under electron-driven (nondissociative electron transfer) and heat-driven (collision-induced unfolding) activation stimuli. The outcomes support the feasibility to either unfold or (partially) refold the oligorotaxane foldamer on purpose in the gas phase. Our results show that the balance between the stabilizing π-π interactions and the versatile Coulomb interactions dictates the elongation state of the foldamer in the gas phase and emphasizes the adequacy of mass spectrometry tools for the superstructural characterization of desolvated prototypical artificial molecular machines.

13.
J Am Soc Mass Spectrom ; 27(10): 1637-46, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27488317

RESUMO

Disulfide bonds are post-translationnal modifications that can be crucial for the stability and the biological activities of natural peptides. Considering the importance of these disulfide bond-containing peptides, the development of new techniques in order to characterize these modifications is of great interest. For this purpose, collision cross cections (CCS) of a large data set of 118 peptides (displaying various sequences) bearing zero, one, two, or three disulfide bond(s) have been measured in this study at different charge states using ion mobility-mass spectrometry. From an experimental point of view, CCS differences (ΔCCS) between peptides bearing various numbers of disulfide bonds and peptides having no disulfide bonds have been calculated. The ΔCCS calculations have also been applied to peptides bearing two disulfide bonds but different cysteine connectivities (Cys1-Cys2/Cys3-Cys4; Cys1-Cys3/Cys2-Cys4; Cys1-Cys4/Cys2-Cys3). The effect of the replacement of a proton by a potassium adduct on a peptidic structure has also been investigated. Graphical Abstract ᅟ.


Assuntos
Dissulfetos/análise , Espectrometria de Massas/métodos , Peptídeos/química , Sequência de Aminoácidos , Cisteína , Prótons
14.
Proteomics ; 15(16): 2823-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25821205

RESUMO

State-of-the-art characterization of proteins using MS namely relies on fragmentation methods that allow exploring featured dissociative reaction pathways. These pathways are often initiated by a series of potentially informative mass-constant conformational changes that are nonetheless frequently overlooked by lack of adequate investigation techniques. In the present study, we propose a methodology to readily address both structural and energetic aspects of stereoisomerization reactions using ion mobility coupled with MS. To this end, a commercial spectrometer was used as a reactor comprising an energy resolved collisional activation step intended at promoting controlled conformational changes and a structural assignment step dedicated to the identification of the generated isomers. This identification relies on ion mobility and other on-line coupled techniques, namely an originally designed gas-phase H/D exchange experiment. We here apply this methodology to characterize the isomerization kinetics of capistruin, a 19-residue long lasso-folded peptide. We expect this approach to bring insights into the physical origin of global dissociation thresholds monitored in MS/MS experiments and to set a promising basis for quantitative investigations of the stability of different molecular folds.


Assuntos
Medição da Troca de Deutério/métodos , Espectrometria de Massas/métodos , Peptídeos/química , Sequência de Aminoácidos , Isomerismo , Reprodutibilidade dos Testes , Termodinâmica
15.
Anal Chem ; 86(19): 9693-700, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25188877

RESUMO

Hyperbranched and star shaped polymers have raised tremendous interest because of their unusual structural and photochemical properties, which provide them potent applications in various domains, namely in the biomedical field. In this context, the development of adequate tools aiming to probe particular three-dimensional features of such polymers is of crucial importance. In this present work, ion mobility coupled with mass spectrometry was used to experimentally derive structural information related to cationized linear and star shaped poly-ε-caprolactones as a function of their charge state and chain length. Two major conformations were observed and identified using theoretical modeling: (1) near spherical conformations whose sizes are invariant with the polymer topology for long and lightly charged chains and (2) elongated conformations whose sizes vary with the polymer topology for short and highly charged chains. These conformations were further confirmed by collisional activation experiments based on the ejection thresholds of the coordinated cations that vary according to the elongation amplitude of the polymer chains. Finally, a comparison between solution and gas-phase conformations highlights a compaction of the structure with a loss of specific chain arrangements during the ionization and desolvation steps of the electrospray process, fueling the long-time debated question related to the preservation of the analyte structure during the transfer into the mass spectrometer.


Assuntos
Espectrometria de Massas/métodos , Polímeros/química , Íons
16.
J Am Soc Mass Spectrom ; 25(8): 1384-93, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24845353

RESUMO

During their travel inside a traveling wave ion mobility cell (TW IMS), ions are susceptible to heating because of the presence of high intensity electric fields. Here, we report effective temperatures Teff,vib obtained at the injection and inside the mobility cell of a SYNAPT G2 HDMS spectrometer for different probe ions: benzylpyridinium ions and leucine enkephalin. Using standard parameter sets, we obtained a temperature of ~800 K at injection and 728 ± 2 K into the IMS cell for p-methoxybenzylpyridinium. We found that Teff,vib inside the cell was dependent on the separation parameters and on the nature of the analyte. While the mean energy of the Boltzmann distributions increases with ion size, the corresponding temperature decreases because of increasing numbers of vibrational normal modes. We also investigated conformational rearrangements of 7+ ions of cytochrome c and reveal isomerization of the most compact structure, therefore highlighting the effects of weak heating on the gas-phase structure of biologically relevant ions.

17.
J Phys Chem Lett ; 5(21): 3787-91, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26278748

RESUMO

The dissociation of benzylpyridinium "thermometer" ions is widely used to calibrate the internal energy of ions produced in mass spectrometry. The fragmentation mechanism is usually believed to yield a benzylium cation, although recent studies suggest the possibility of a rearrangement leading to the tropylium isomer, which would compromise the accuracy of energy calibrations. In this study, we used IRMPD spectroscopy to probe the dissociation pathways of the p-(tert-butyl)benzylpyridinium ion. Our results show that the formation of both benzylium and tropylium products is feasible depending on the activation regime and on the reaction time scale. Varying the trapping delays in the hexapole gives insight into a rearrangement mechanism occurring through consecutive reactions with an isomerization from benzylium to tropylium. Our work provides experimental validations for the established calibration procedure and highlights the adequacy of IRMPD spectroscopy to qualitatively resolve gas-phase rearrangement kinetics.

18.
Anal Chem ; 83(14): 5775-82, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21682304

RESUMO

Traveling wave ion mobility spectrometers (TW IMS) operate at significantly higher fields than drift tube ion mobility spectrometers. Here we measured the fragmentation of the fragile p-methoxybenzylpyridinium ion inside the TW ion mobility cell of the first-generation SYNAPT HDMS spectrometer. The ion's vibrational internal energy was quantified by a vibrational effective temperature T(eff,vib), which is the mean temperature of the ions inside the cell that would result in the same fragmentation yield as observed experimentally. Significant fragmentation of the probe ion inside the TW IMS cell was detected, indicating that field heating of the ions takes place in TW IMS. For typical small molecule IMS conditions, T(eff,vib) = 555 ± 2 K. The variations of the effective temperature were studied as a function of the IMS parameters, and we found that T(eff,vib) decreases when the wave height decreases, when the pressure increases, or when the wave speed increases. The energy transfer efficiency of argon is higher than for He, N(2), or CO(2). With T(eff,vib) being directly related to the ion speed inside the TW IMS, our results also provide new insight on the ion movement in TW IMS. We also discuss the influence of field heating of ions for calibration and structural studies in TW IMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...